Multi Objective Segmentation for Vehicle License Plate Detection with Immune-based Classifier: A General Framework
نویسندگان
چکیده
Vehicle License Plate Recognition (VLPR) is an important system for harmonious traffic. Moreover this system is helpful in many fields and places as private and public entrances, parking lots, border control and theft control. This paper presents a new framework for Sudanese VLPR system. The proposed framework uses Multi Objective Particle Swarm Optimization (MOPSO) and Connected Component Analysis (CCA) to extract the license plate. Horizontal and vertical projection will be used for character segmentation and the final recognition stage is based on the Artificial Immune System (AIS). A new dataset that contains samples for the current shape of Sudanese license plates will be used for training and testing the proposes framework.
منابع مشابه
Iranian Vehicle License Plate Detection based on Cascade Classifier
A license plate recognition system contains three main steps: plate detection, character segmentation and character recognition. The first and foremost step of this system is the plate detection stage where the plate is located from the input image. In this paper an effective plate detection approach is developed based on a cascade classifier. A two-phase training approach is proposed to enhanc...
متن کاملLicense Plate Localization Using Gabor Filters and Neural Networks
Vehicle License Plate Detection (LPD) is an important step for the vehicle plate recognition which can be used in the intelligent transport systems. Many methods have been proposed for the detection of license plates based on: Mathematical morphology, Discrete Wavelet Transform, Hough Transform and others. In general, an LPR system includes four main parts: Vehicle image acquisition, license pl...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملVehicle License Plate Recognition Using Edge Detection and Neural Network
Vehicle License Plate Identification and Recognition (VLPIR) uses image processing and character recognition technology in order to identify the license plate number automatically. VLPIR system are used for the purpose of effective traffic control, security applications such as access control to restricted areas and tracking of car, tracing of stolen cars, identification of dangerous and reckle...
متن کاملReading Car License Plates Using Deep Convolutional Neural Networks and LSTMs
In this work, we tackle the problem of car license plate detection and recognition in natural scene images. Inspired by the success of deep neural networks (DNNs) in various vision applications, here we leverage DNNs to learn high-level features in a cascade framework, which lead to improved performance on both detection and recognition. Firstly, we train a 37-class convolutional neural network...
متن کامل